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Abstract—Representation learning algorithm in medical area
maps high dimensional real world medical concepts to low di-
mensional vector space, encodes rich medical knowledge, and has
brought improvement to various machine learning applications in
medical area. However, previous representation learning models
in medical area failed to consider the multi-sense characteristic
of medical concept. Moreover, the inner relationships between
representations learned by previous model is implicit and can
only be explained according to visualization, which means poor
interpretability. In this paper, we propose Topic Medical Concept
Embedding (TMCE), a generative embedding model to address
above two problems. TMCE is able to learn multi-sense rep-
resentations for a single medical concept, and TMCE can also
improve interpretability by modeling relationships between each
concept explicitly. In TMCE, multi-sense concept representations
are influenced by its contexts and its topics. In addition, dosage
information which is ignored by previous work are also utilized
in TMCE. A MCMC method is presented to jointly learn the
two-layer topic embeddings and multi-sense concept embeddings.
Experimental results show that representations learned by TMCE
outperforms those learned by other strong baselines by a large
margin in a multi-label diagnose classification tasks. Several case
studies further show that TMCE can learn medically correct
multi-sense representations with better interpretability than other
strong baselines.

Index Terms—representation, multi-sense, topic modeling, con-
text, interpretability

I. INTRODUCTION

Learning low-dimensional continuous representations for
discrete high dimensional medical concepts has attracted a
lot of attention. These algorithms transform high dimensional
real world medical concepts into lower dimensional real value
vectors while still keeping inner relationships, for example,
medicines with similar usage will be close in the lower
dimensional space. Such representations can help capture
latent knowledge behind medical concepts and have shown
improvement on various machine learning applications [1]–
[3]. Although representations learned by previous proposed
work have brought improvements over accuracy of various
prediction tasks, they all failed to address two important
problems:

* These authors contribute same to this work
† Corresponding Author

• One medical concept may have more than one com-
plete different meanings, for example, aspirin can be
used to cure fever as well as cardiovascular disease.
Existing methods can only assign one representation for
each medical concept, which is not suitable in many
cases. In addition, note the fact that in electronic health
record (EHR), medical concepts are always recorded with
dosage information which is numerical value correspond-
ing to medical concepts. Note that change in dosage
information can change the implication of a medical
concept completely, so dosage is informative to find
different meanings of a same concept. For example, a
heart rate at 180 beats per minute (bmp) means danger
while a heart rate at 90 bpm only means normality. None
of previous work is able to utilize this useful information.

• A requirement of machine learning methods in medical
area is strong interpretability. Relationships between rep-
resentations learned by previous methods is implicit, that
is to say relationships between representations can only
be explained according to visualization empirically. An
algorithm that can explicitly and automatically model the
inner relationships between different representations and
provide better interpretability is needed.

In this paper, we propose Topic Medical Concept Em-
bedding (TMCE) for medical concept to address the above
two problems. TMCE combines intuitions from both embed-
ding methods that exploit context, and non-parametric topic
models that model topic structure. Embedding methods learn
representations by analyzing context around each data point.
These methods can learn from context, however, relationships
between learned representations are implicit and can only
be explained empirically according to visualization. While,
non-parametric topic models can group data into topics, and
automatically derive explicit explanation according to learned
topics. In TMCE, both intuitions are combined, and multi-
sense representations are learned by utilizing both context in-
formation and topic structure. In addition, dosage information
are also utilized by TMCE to enhance performance.

The architecture of TMCE is shown in Figure 1. As shown
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in Figure 1, a two-layer Dirichlet processes is built to model
implicit relationships behind representations. The global layer
Dirichlet process in layer C models all possible medical topics
that are shared by different medical concepts in local layer K.
Each local layer Dirichlet process in a concept models related
topics for current medical concept, under the influence of
dosage information. Multi-sense representations of a concept
are drawn from corresponding local topics under the influence
of context information. In this way, representations in TMCE
are influenced by both the local topics which they belong to,
and context information around them. TMCE is trained with
MCMC algorithm.

Experimental results show that representations learned by
TMCE outperform other strong baselines including skip gram
and stack AutoEncoder by large margin on a multi-label
diagnose classification task. In addition, several experiments
using visualization and other methods are given to show that
multi-sense representations learned by TMCE are medically
correct and hold better interpretability.

II. RELATED WORKS

The popularity of representation learning started from Nat-
ural Language Process community. Inspired by the success
representation learning gained in NLP, representation learning
also attracted a lot attention in medical machine learning field.
Previous representation learning methods in medical area can
be classified into two categories: The first category includes
works that learn representations from free text. Minarro et
al. applied skip gram algorithm directly to medical text
corpus collected from websites such as PubMed to learned
medical concepts representation [4]. De et al. learned concept
representations from patient text records and medical journal
abstract after replacing words in the corpus by Unified Medical
Language System (UMLS) standard concept vocabulary [5].
The second category includes works learn representations from
electronic health record (EHR), which is structured medical
data collected by hospitals. Choi et al. learned concept repre-
sentations with skip gram on EHR data [2], [3]. In order to
learn representation for a single visit, Choi et al. used a neural
network and skip-gram-like objective to learn representations
for both each medical concept and each visit made by a
patient [1]. However, previously proposed methods failed to
consider the multi-sense characteristic of medical concepts,
and relationships between learned representations are implicit,
so the interpretability is limited.

A. Dirichlet Process

Dirichlet process (DP) was first introduced by Ferguson et
al. [6]. DP is characterized by an arbitrary base distribution G0

and a positive concentration parameter ↵, and is a probability
distribution whose range is itself a set of probability distribu-
tions. DP is often used in Bayesian inference to describe the
prior knowledge about the distribution of random variables. A
distribution G can be drawn from DP as shown in Equation 1,
and M random variables {✓

m

} are drawn from G as shown
in Equation 2:

G|↵, G0 ⇠ DP (↵, G) (1)

✓
m

|G ⇠ G, m = 1, ...M (2)

The Dirichlet process can be seen as the infinite-dimensional
generalization of the Dirichlet distribution. As Dirichlet dis-
tribution is the conjugate prior for the categorical distribution,
the Dirichlet process is the conjugate prior for infinite, non-
parametric discrete distributions. In this perspective, DP can
be used as a prior on the parameters of a mixture model of
unknown numbers of components. For example, given the first
M�1 samples of G, the new sample ✓

M

is either drawn from
existing draws, according to a multinomial allocation based
on the number of previous draws, or drawn from the base
distribution G0 with probability ↵

↵+M�1 .

III. MULTI-SENSE REPRESENTATION LEARNING WITH
AMOUNT FOR MEDICAL CONCEPT

In this section, first we give clear definitions to notions that
are used in this work. Then, we will give details on architecture
of TMCE.

• Medical Concept: Medical concept in our work includes
medication (such as aspirin) and medical indicators (such
as heart rate). Medical concepts are denoted as c

i

.
• Dosage: In data, regarding one concept, only a certain

number of dosages have appeared. m
ij

is the jth possible
dosage associated with concept c

i

in data.
• Context-dosage pair: Since every concept has a dosage,

for simplicity and clearer notation, we call a concept with
dosage (c

i

, m
ij

) concept-dosage pair.
• Context: The context for a concept-dosage pair means all

other concepts-dosage pairs that are recorded in a same
visit made by a patient.

• Concept representation: Each medical concept will be
assigned several multi-sense representations, which are
called multi-sense representations. c

ij

is the indicator
of which representation is allocated (c

i

, m
ij

), and the
corresponding representation is marked as v

ij

.
Our multi-sense embedding model is designed under such

an assumption that each medical concept can be related to
various topics, and different medical concepts can share a
same topic. Under this assumption, we designed an embedding
model using a two-layer Dirichlet process to model implicit
relationships between representations explicitly. Multi-sense
representations of one certain concept are drawn under the
influence of related topics and context. Dosage information
are also taken into account. The architecture of our model is
shown in Figure 1.

A. Global Layer of Topic Allocation

In global layer of TMCE, which is shown as layer C in
Figure 1, various medical topics are modeled. Note the fact
that there are many different types of topics in medical area,
and the number of these topics is unknown at the start of
modeling, it is natural to model the mixture of all the topics
by a Dirichlet process, which is a non-parametric prior for
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Fig. 1: Architecture of TMCE

a mixture with unknown numbers of component. A global
Dirichlet process is designed, with a base distribution H =

NIW (µ0, ⌃0, ⌫, �) representing all possible topics of medical
concept:

G0|�, H ⇠ DP (�, H)

(µ
c

, ⌃
c

) ⇠ G0
(3)

|C| Normal distributions, each represents one topic, are
drawn from the distribution G0.

B. Local Layer of Topic Allocation

Global layer of TMCE models all possible topics, and these
topics are shared by medical concepts in local layer, which is
shown as layer K in Figure 1. Local layer is comprised of
medical concepts, and each medical concept can be allocated
one or more topics from global layers. As explained before,
dosage information can provide valuable information, so local
dosage distributions are mixed with global topic distributions
to from local topic distributions. To be more specific, for each
medical concept i, the allocation G

i

for each representation
v

ij

is drawn from a local Dirichlet process.

G0
i

= (G0, F
M

i

)

G
i

|↵, G0
i

⇠ DP (↵, G0
i

)

(4)

where G0
i

is made up of global measure of topics G0

and local measure of dosage FM

i

, under the assumption that
dosage information can be used as auxiliary evidence for
topics and embedding inference.

As shown in Figure 1, each concept in local layer K is made
up of pairs of global measurement of topic and local mea-
surement of dosage. Topics are shared among concepts, and a
concept may be related to multiple topics. When a concept is
associated with a specific kind of topic, the dosage should
follow a distribution with a local dosage measurement as
parameter. A intuitive explanation is: aspirin (a concept) may
have different usages (local topic allocations), when aspirin
is used to cure fever (a specific local topic), corresponding
dosage should be around 50mg (local dosage measurement).

C. Draw Representation

Finally, both information from the two level topic embed-
ding structure, and information from context are combined to
generate representation for c

ij

as shown in Equation 5.

v
ij

⇠ p(v
ij

|µ
j

, ⌃
j

,v
ij,context

) (5)

Dosage is drawn from a Normal distribution and the local
measure is Fm

i

= N(µM

i

, ⌃M

i

):

m
ij

⇠ N(m
ij

|µM

ij

, I) (6)

In our model, global layer DP generates parameters µ
j

and ⌃

j

for each topic according to the base distribution H
which is a Normal-Inverse-Wishart distribution and concen-
tration parameter ⌘. Then, the scaling parameter ⌫ adjusts
between cluster scattering of the cluster-specific mean vectors.
These parameters, together with different base measures of
the dosage F

i

of each medical concept i, define the base
measures G0

i

of the local layer DPs. Finally, representations
and corresponding dosage are drawn from local DP under the
influence of context.

IV. INFERENCE

In this section, posterior inference is used to sample parame-
ters from their joint posterior distribution given observed data.
To simplify denotation, we use indicator to denote which topic
does the current unit derive from. z

ij

is used as the indicator of
(v

ij

, m
ij

) in the local DP layer, and t
ik

is used as the indicator
of k component of the medical concept c

i

in the global DP
layer.

Marginalizing out the base distribution, z
ij

and t
ij

can be
sample in:

p(z
ij

= k|V ,m, z�j

i

, t)

/
(

↵p(v
ij

)p(m
ij

) k = K + 1

n�j

i

N(v
ij

|µ�j

k

, ⌃�j

k

)N(m
ij

|µM

k

) k  K

(7)

p(t
ik

= c|V ,m, t�k

i

, z)

/
(

�
Q

j:zij=k

p(v
ij

) c = C + 1

o�k

c

Q
j:zij=k

p(v
ij

|µ�k

i

, ⌃�k

i

) c  C

(8)

where o
c

and n
i

represent the number of samples of the
global and local topics respectively, V stands for all represen-
tations, m stands for all dosage in data. While sampling the
t
ik

, we only update global topic parameters and assume that
removing a single data instance does not significantly change
local topic parameters. Because of the dependency among data
instances, removing a data instance from a global topic not
only affect the parameters of the global topic it belongs to,
but also the corresponding local topic parameters. However,
updating local topic parameters for every data instance re-
moved will be too computational costly, so the influence on
local topic parameters is ignored for the sake of computational
efficiency.
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Then, the parameters of the local and global topics are sam-
pled. The posterior distribution of the component parameters
can be obtained by marginalizing out the joint distribution

p(µ
c

|z, t,V , ⌃
c

) ⇠ N(

�µ0 + n
c

v̄

� + n
c

,
⌃

c

� + n
c

)

p(⌃

c

|z, t,V , µ0, ⌃0) ⇠ IW (⌫ + n
c

, ⌃0
c

)

p(µM

ik

|m
i

) ⇠ N(

�µ0 + n
k

v̄

� + n
k

,
⌃

M

i

� + n
k

)

(9)

where ⌃

0
c

= ⌃0 + S +

�nc
�+nc

(v̄ � µ0)T (v̄ � µ0) and S is
the scatter matrix.

Given all the other parameters, the posterior of embedding
vectors are drawn from the conditional posterior distribution
p(v

ij

|z
ij

, v
ij,context

) described in Equation 5. In order to ac-
celerate the training, the correlation between context informa-
tion and topic information is ignored, that is to say we assume
they are conditionally independent given the embedding v

ij

,
so that the format of the objective can be simplified into:

max

v

{
Y

(

Y

context

p(v
ij,context

|v
ij

))p(v
ij

|z
ij

)} (10)

In this way, the learning process is divided into two stages:
In the first stage, gradient optimization is used on the condi-
tional distribution of V , which is in the format of skip-gram. In
the second stage, V is treated as fixed and Bayeisan inference
is taken place to find the optimal variables of our model.

V. EXPERIMENT

We evaluate the performance of TMCE on MIMIC31 dataset
in both quantitative and qualitative method. First we give
detailed description about the data used to train and evalu-
ation TMCE. Then we compare TMCE with other popular
baselines on a diagnose multi-label classification task. After
that, more experiments are presented to show TMCE can bring
about multi-sense feature and better interpretability. These
experiments show the interpretability of concept multi-sense
representations, local topic and global topic allocation.

A. Settings

Aspirin
5mg

5% Saline
500ml

Aspirin
2mg

Heart Rate 
92 bpm

……

……

a visit

a visit

Fig. 2: A Example of Data Structure in MIMC3

We evaluate performance of TMCE on a public available
dataset MIMIC3 1, which is a deidentified health dataset.
A piece of sample from the dataset are shown in Fig-
ure 2. Each time a patient pays a visit, all data includ-
ing medication usage, medical body indicator, medical test
result, diagnoses from doctor etc. are recorded during the
visit. More specifically, we use data in following tables
in MIMIC3: “CHARTEVENTS”, “INPUTEVENTS CV”,

“INPUTEVENTS MV”, “LABEVENTS”, “MICROBIOLO-
GYEVENTS”. For computational efficiency, we only choose
to model the most frequent 1000 medical concepts in MIMIC
data. Statistical information of data we used are: number of
visit: 58077; number of unique medical concept: 928; average
number of unique medical concepts per visit: 210; number
of unique concept dosage pairs: 333613; average number of
unique medical concept per visit: 884.

In the table “DIAGNOSE ICD” in MIMIC3, each visit
was assigned several International Classification of Disease
(ICD) codes for billing and recording purpose. ICD codes are
diagnoses given by doctors to each patient during a single
visit. To preform diagnoses prediction evaluation, we extract
ICD codes for each visit, and assign the ICD codes as tags to
every concept-dosage pair within the visit. Note that a same
concept-dosage pair may appear in different visits, a concept-
dosage pair may receive ICD tags from different visits.

B. Multi-label classification

For each diagnose d
i

, the objective is to predict which
concept-dosage pair is associated with this diagnose. More
specifically, for each d

i

, classify all concept-dosage pairs into
two classes according to whether this concept-dosage pair
has d

i

as tag. The multi-sense concept representations are
input to a one-vs-rest logistic regression classifier with L2
regularization. Logistic regression classifiers are trained on
10%-90% data respectively and tested on the rest of the data
and ten-fold cross validation are applied. For all diagnoses
involved in the prediction task, F Score is calculated and
shown in Table I. We compare TMCE with following strong
baselines:

• Skip Gram without dosage When training skip gram
without amount, we simply ignore dosage information,
and regard all c

ij

as c
i

. When testing, we use represen-
tation of c

i

for all c
ij

• Skip Gram with dosage Apply skip gram to every
concept with different dosage in data. Notice that by skip
gram, only context information can be captured.

• Stack AutoEncoder Stacked AutoEncoder is a popu-
lar unsupervised representation algorithm proposed by
Vincent et al. [7]. We trained a 3-layer (256-128-64)
stacked autoencoder from randomly initialized one-hot
representation.

Since one-hot representation will be much too high di-
mensional, and one-hot representation can not provide any
interpretability at all, we do not set one-hot as one of our
baselines.

In our model, the hyper-parameters are set as: ↵ = 0.01, ⌘ =

0.02, � = 2, ⌃ = diag{1, 1, ..., 1}, and ⌫ is set to one adding
the dimension of embedding vector.

Experimental results in Table I show that TMCE outper-
forms all other baselines in multi-label diagnose classification
task by a large margin. There are two main reasons why TMCE
can outperform all other baselines: the using of the dosage

1https://mimic.physionet.org/
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TABLE I: Experimental result of multi-label diagnose classification task. Percentage on the top stands for the percentage of
all data used as training data.

10% 20% 30% 40% 50% 60% 70% 80% 90%

F Score

Skip-Gram without dosage 0.673 0.673 0.680 0.692 0.692 0.697 0.710 0.718 0.712
Skip-Gram with dosage 0.670 0.673 0.676 0.680 0.685 0.693 0.703 0.718 0.739
SAE 0.656 0.651 0.654 0.669 0.674 0.681 0.703 0.713 0.737
TMCE 0.686 0.695 0.709 0.723 0.738 0.755 0.770 0.785 0.798

Fig. 3: 1st Training Epoch by TMCE Fig. 4: 2st Training Epoch by TMCE Fig. 5: 3st Training Epoch by TMCE

information and topic information. First, in contrast to skip
gram without amount, TMCE utilizes extra dosage information
which can change the implication of a concept completely
in some situations, for example, it is apparent that diagnoses
associate with a high heart rate should not be the same as those
associated with a moderate or low heart rate. To model and
train representations on a concept-dosage granularity will help
encode richer information, and brings absolute advantage.

Second, topic information utilized by TMCE helps TMCE
outperform skip gram with dosage. According to Equation 5,
the topic information is added into the objective, and that
is to say, representations of concept-dosage pairs with the
same topic will get closer to each other. Representations
learned directly from context by skip gram with dosage are
deteriorated by stochastic noise in data since in reality the
amount of data is not sufficient enough to clear all the noise
and generate perfect inference. However, by utilizing common
pattern in a group of similar representations, noise can be
offset between concept-dosage pair in a same topic.

To better understand the advantage brought by using topic
information, we can compare performance of skip-gram with
dosage and skip-gram without dosage. Even though skip gram
with dosage utilizes extra dosage information than skip gram
without dosage, skip gram with dosage performs worse. The
reason lies in the extra noise brought by adding dosage
information. More stochastic noise are also brought in by
adding dosage information because more concept-dosage pairs
are to be embedded than concept itself. More concept-dosage
pairs to be embedded brings more stochastic noise, thus, the
benefit brought by adding more dosage information are offset
by extra noise. TMCE solves this problem by using topic
information to offset stochastic noise between concept-dosage
pairs among a same topic, so that TMCE can outperform two
baselines.

The result of the stack AutoEncoder is learned from one-
hot vectors, which have neither context information nor topic

information. Lack of information encoded is the reason why
stackAutoEncoder gives a low performance in multi-label
diagnose classification task.

C. Representation Interpretability

Representations learned by TMCE have the capability to
be multi-sense and holds better interpretability. To further
elaborate the advantage of TMCE, visualization of the training
process is shown in Figure 3. Principle component analysis
(PCA) algorithm is used to visualize representations in the
process of training. In the pictures, all concept-dosage pairs
of medical concept Aspirin are shown, where one color
stands for a topic. The first picture shows the first epoch of
TMCE in Figure 3. Because of the two-level topic allocation
structure designed in TMCE, all concept-dosage pairs are
divided into a few meaningful topics. However, because of
stochastic noise on each concept dosage pair, concept-dosage
pairs belongs to different global topics mix together, and
different topics overlap with each other and disperse widely in
the embedding feature space. In Figure 4, after two epochs of
TMCE training, concept-dosage pairs belong to a same global
topic get closer. Intuitively, concept-dosage pair with similar
implication should have a similar representation. In the third
epoch shown in Figure 5, information from concept, topic and
dosage are better utilized, and the distance between different
topics increases, the boundary between different global topics
become clearer.

Since each concept may be allocated with several global
topics, and topics are shared among different concepts, one
global topic can match multiple concepts. If TMCE can
correctly model the inner relationships between different con-
cepts, concepts that have a same topic allocated should be
related to each other closely in terms of medical relationships.
In Table II, three global topics are listed. Under each topic,
concepts that are related to it are listed. We choose three
global topics of concepts with moderate concept numbers
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TABLE II: Three Sample Global Topics And Related Medical Concepts
Sample Topic 1 Sample Topic 2 Sample Topic 3
Intubation Calcium Insulin-Humalog
Platelet Count Po Intake Insulin-Glargine
PO2 Invasive Ventilation Dextrose 5%
Bicarbonate O2 Flow Insulin-Regular
Blood Cultured OR Crystalloid Morphine Sulfate
Red Blood Cells Fibrinogen Lorazepam (Ativan)

Fig. 6: Local Visualization of Mixture of 3 Different Kinds of
Insulins

for the sake of display. In sample topic 1, concepts about
blood, blood testing are clustered together. In sample topic
2, concepts related to nutrition and supplementary medication
for surgery are clustered together. In sample topic 3, concepts
about insulin and anesthetic are clustered together. TMCE has
modeled the inner relationships between different concepts
correctly, and in contrast to previous methods that explain the
inner relationships between concepts according to visualiza-
tion, TMCE learns the inner relationships automatically and
explicitly using topic structure, which brought much better
interpretability than previous works.

In Figure 6, local topics of three related medical con-
cepts, insulin-regular, insulin-humalog, and insulin-glargine
are shown. Each distribution stands for the dosage distribution
of one local topic. Insulin-regular is a kind of regular insulin,
insulin-humalog is a kind of fast-acting and stronger insulin,
while insulin-glargine is a kind of slow-acting insulin. To
make it clear to understand, a same color in three mixtures
stands for a same global topic, and for convenience, we
will refer to three global topics as topic-green, topic-pink
and topic-orange. First, all topics assigned to three types of
insulin are among topic-green, topic-pink, and topic-orange,
and this demonstrates that TMCE recognizes the similarity
between three kinds of insulin, so the topics assigned to
this three kinds of insulins are the same. Second, note that
smaller dosage of fast rate insulin, medium dosage of regular
insulin, and larger dosage of slow rate insulin are assigned
the same topic, topic green. Such pattern is medically correct
since compares to regular insulin, larger dosage of slow-effect

insulin is needed in order to reach the same effect, while only
smaller amount of fast-rate insulin is needed. The example
shows that TMCE is able to learn multi-sense representations
with the help of dosage information. The learned multi-sense
representation is medically correct which further validates the
ability of TMCE to provide multi-sense representations with
better interpretability.

VI. CONCLUSION

In this paper, we propose TMCE to learn multi-sense
representations for medical concept. TMCE is also able to
take dosage information into account, and learns the relation-
ships between representations explicitly which brings better
interpretability. TMCE combines both intuition from skip-
gram modeling and non-parametric topic models, which can
learn concept representations from both context and topics.
Experiments show that our model outperforms other strong
baselines in multi-label diagnose classification task, and learns
multi-sense representations with better interpretability.
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