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Abstract

Community question answering aims at choosing the most
appropriate answer for a given question, which is important
in many NLP applications. Previous neural network-based
methods consider several different aspects of information
through calculating attentions. These different kinds of at-
tentions are always simply summed up and can be seen as a
“single view”, causing severe information loss. To overcome
this problem, we propose a Multi-View Fusion Neural Net-
work, where each attention component generates a “view” of
the QA pair and a fusion RNN integrates the generated views
to form a more holistic representation. In this fusion RNN
method, a filter gate collects important information of input
and directly adds it to the output, which borrows the idea of
residual networks. Experimental results on the WikiQA and
SemEval-2016 CQA datasets demonstrate that our proposed
model outperforms the state-of-the-art methods.

Introduction
In question answering (QA), answer selection aims to
choose the most appropriate answer from a pre-selected can-
didate set (Yao et al. 2013), which could be important to
various NLP tasks. In human-computer dialog systems, for
example, the dialog agent needs to respond to questions is-
sued by the user. Fortunately, a large number of QA pairs
exist in community question answering (CQA) forums, such
as Quora1 and Stack Overflow.2 It should be more conve-
nient for a dialog agent to directly retrieve the most appro-
priate answer from these forums, rather than generating a
new one by itself from scratch. Table 1 illustrates a simpli-
fied example for the answer selection task, where Answer I
is less related to the query content “cause” and Answer II
better matches the question.

Traditional methods are typically based on lexical and
syntactic features, e.g., the edit distance between parse trees
(Heilman and Smith 2010). Such methods require exten-
sive human efforts on feature engineering. Recently, deep
learning models have been adapted in many applications
for natural language processing. Neural networks such as
convolutional neural networks (CNNs) and recurrent neural
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1https://www.quora.com/
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Question What causes heart disease?
Answer I Cardiovascular disease refers to any

disease that affects the cardiovascu-
lar system, principally cardiac dis-
ease, vascular diseases of the brain
and kidney, and peripheral arterial
disease. (×)

Answer II The causes of cardiovascular disease
are diverse but atherosclerosis and/or
hypertension are the most common.
(
√

)

Table 1: An example question and candidate answers. (The
second answer is correct.)

networks (RNNs) can automatically learn features for an-
swer selection. Attention mechanisms have also been intro-
duced to enhance interaction between questions and answers
(Wang, Liu, and Zhao 2016; Zhang et al. 2017).

Previous attention-based models roughly collect all useful
information from network hidden states and squeeze them
to generate one attention vector (namely, a single view),
which fails to capture various fine-grained aspects between
the question and candidate answers.

Take the question in Table 1 for example. On one hand,
as we analyze the question content, a good answer should
contain the “cause” of heart disease. From another view to
parse the question type, an ideal answer seems to be related
to “what”, rather than “who” or “where”. A single attention
vector, used in existing approaches, may not be sufficient
to capture various different aspects of viewing a question,
resulting in inaccurate answers.

In this paper, we propose a Multi-View Fusion Neural
Network (MVFNN), which targets at better modeling on
multiple question aspects like question type, question main
verb, question semantics, etc. We focus four views in this
study: inquiry type view, inquiry main verb view and inquiry
semantic view, co-attention view. Then our model integrates
all views into a holistic representation by a fusion recurrent
network. In our proposed fusion RNN, we record the impor-
tant parts of each time step and store them into an external
memory, which is added to the output of the RNN. Based
on the idea of deep residual networks (He et al. 2016), this



mechanism allows the original view information to directly
affect the ultimate feature representation.

In summary, we make the following contributions in this
paper:

• We consider the attention mechanism from several views
to take different kinds of information into consideration.

• We propose a fusion RNN method to integrate different
views together for a more holistic view of the QA pair.
With the idea of deep residual network, the holistic view
contributes to the performance a lot.

• Our proposed model achieves the state-of-the-art results
on two datasets. We also conduct ablation tests to demon-
strate the effect from each type of view as well as the fu-
sion RNN method.

Related Work
Answer selection is usually formulated as a text match-
ing problem. Previous work can be roughly divided into
two branches: traditional feature-based methods and neural
network-based methods. Traditional methods tend to em-
ploy feature engineering, linguistic tools, or external re-
sources, which is time-consuming and suffers from the data
sparsity problem. A bunch of related studies (Wang, Smith,
and Mitamura 2007; Heilman and Smith 2010; Severyn and
Moschitti 2013) utilize information on syntactic parse trees
to match questions and answers. Xue, Jeon, and Croft (2008)
combine a translation-based language model for the ques-
tion part with a query likelihood approach for the answer
part using a retrieval method. Surdeanu, Ciaramita, and
Zaragoza (2011) analyze different kinds of feature types
such as similarity features, translation features, density / fre-
quency features for ranking answers to non-factoid ques-
tions in community QA forums. Yih et al. (2013) use seman-
tic features from WordNet to enhance lexical features. Ty-
moshenko and Moschitti (2015) analyze the effect of syntac-
tic and semantic structures extracted by shallow and deeper
syntactic parsers in answer re-ranking. Filice et al. (2016),
who achieved the best results in the SemEval-2016 CQA
task, used various types of features including 8 similarity
features, 44 heuristic features, and 16 thread-based features.

Recently, neural network based methods have achieved
great progress in alleviating the burden of manual feature
engineering. Deep Structured Semantic Models (DSSM)
(Huang et al. 2013) and its convolutional counterpart C-
DSSM (Shen et al. 2014) map the query and answers to a
common semantic space using a non-linear projection, and
calculate their relevance score by the cosine similarity be-
tween their semantic vectors. Lu and Li (2013) and Wang,
Mi, and Ittycheriah (2016) use deep architectures to model
the complicated matching relations between two texts. Iyyer
et al. (2014) use recursive neural networks to add syntactic
information (e.g. from dependency trees) to the model.

Wang and Nyberg (2015), Feng et al. (2015) and Hu
et al. (2014) proposed to use a stacked bidirectional Long
Short-Term Memory (LSTM) network to sequentially read
sentences of question and answer, and then output their rel-
evance scores. CNN based approaches are also proposed to
model the two sentences directly on the interaction space

to make them meet before their own high-level represen-
tations mature (Hu et al. 2014; Lingxun and Yan 2016;
Tymoshenko, Bonadiman, and Moschitti 2016a; 2016b; Yin
and Schütze 2017). Miao, Yu, and Blunsom (2015) proposed
the neural variational inference method. With the develop-
ment of attention mechanisms, Tan, Xiang, and Zhou (2015)
and Wang, Liu, and Zhao (2016) propose inner attention and
outer attention on the sentence RNNs of question and an-
swer.

For better performance on redundant and noisy text,
Zhang et al. (2017) propose an attentive tensor-based CNN
to build models that are more robust to noisy texts.

The above attention-based studies tend to abstract all use-
ful information together into a “single view”. In contrast,
we propose to calculate attention separately for each type of
information in a “multi-view” fashion. Then we propose a
fusion RNN to integrate the different views to form a more
holistic view.

Attention from Four Views
For a give question, there could be a bunch of views to
model its corresponding answer. In this paper, we construct
four views according to our intuition. These four views are
named inquiry type view, inquiry main verb view, inquiry se-
mantic view and co-attention view. We still use the example
question from Table 1 to illustrate the four views. Figure 1
illustrates the first three views and Figure 3 shows the fourth
view.
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Figure 1: The generation process of inquiry type view, in-
quiry main verb view and inquiry semantic view. “⊗” repre-
sents element-by-vector multiplication.

Inquiry Type View
In this work, each word is represented using an embed-
ding vector xi ∈ Rd. We denote the question as XQ =

{xq1 , xq2 , · · · , xq|Q|} ∈ Rd×|Q| and the answer XA =

{xa1
, xa2

, · · · , xa|A|} ∈ Rd×|A|. |Q| and |A| represent the
length of the question and answer, respectively.
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Figure 2: Two example dependency trees of questions, the
root of the tree is the inquiry main verb.

For typical question sentences, for example those in the
WikiQA dataset, the inquiry type could be determined by the
interrogative word, since each of them contain exactly one
interrogative. In Figure 1, the interrogative word is “what”,
illustrating the inquiry type. This word tells our model that
the question requires an answer in the form of descriptions
(“what”) instead of proper names (“who” or “where”).

We denote the interrogative as xt ∈ Rd, and then use the
interrogative as well as the answer sentence to generate an
attention Attt:

Attt = softmax(wT
t tanh(Wtxt ⊕WtaXA)) (1)

where Wt,Wta ∈ Rd×d and wt ∈ Rd are parameters. “⊕”
means to add vectorWtxt to each row in theWtaXA matrix.

Then, we can generate the inquiry type view as:

Vt = Attt ⊗XA, Vt ∈ Rd×|A| (2)

where “⊗” means to multiply each element of Attt and its
corresponding vector in XA.

Note that in Semeval-2016 CQA dataset, there is not nec-
essarily an interrogative in each question. Instead, there is
an inquiry type annotated for each question. So we just take
this annotated type to calculate our inquiry type view.

Inquiry Main Verb View
Figure 2 shows two sampled question sentences represented
in the form of dependency trees. In the first sentence, the
root of the dependency tree, “cause”, is the main verb of the
whole question, we call it the inquiry main verb. Usually,
the inquiry main verb tells us what the question is asking
about and what it expects a system to answer. For example,
the first question is asking about the reason and the second
question expects an answer about “change”. It is intuitive
that utilizing the inquiry main verb could be helpful for an-
swer selection. Note that finding the main verb in a sentence
is a much less difficult problem compared with performing
full dependency parsing. In this work we simply use a de-
pendency parser only for the convenience of preliminary ex-
perimental study and leave more direct solutions of finding
the main verb as future work.

We denote the inquiry main verb of the question as xc ∈
Rd, which is represented by a d-dimensional word vector.
Then the attention Attc can be calculated as:

Attc = softmax(wT
c tanh(Wcxc ⊕WcaXA)) (3)

where Wc,Wca ∈ Rd×d and wc ∈ Rd are trainable parame-
ters.
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Figure 3: The generating process of co-attention view.

Inquiry main verb view is then obtained by:

Vc = Attc ⊗XA, Vc ∈ Rd×|A| (4)

Inquiry Semantic View
To understand the meaning of the whole question, we need
to build the question’s semantic information into the inquiry
semantic view. We use an LSTM-RNN to read the question
and take the average pooling of the output as the question’s
semantic information, given by:

xs = Average
(
LSTM(xq1 , xq2 , · · · , xq|Q|)

)
(5)

The equations for the inquiry semantic view are similar to
previous ones.

Atts = softmax(wT
s tanh(Wsxs ⊕WsaXA))

Vs = Atts ⊗XA, Vs ∈ Rd×|A| (6)

Again, Ws,Wsa ∈ Rd×d and ws ∈ Rd are trainable param-
eters.

Co-attention View
Inspired by previous work on two-way attention from paired
aspects (Santos et al. 2016; Xiong, Zhong, and Socher
2016), we also introduce a co-attention view in this work,
focusing more on the interaction between the question and
the answers. As is illustrated in Figure 3, we first compute
the affinity matrix, which contains affinity scores that cor-
respond to all pairs of question words and answer words:
M = XT

AXQ. Then we normalizeM row-wise and column-
wise to obtain the attention weights CQ and CA:

CQ = softmax(M)T ∈ R|Q|×|A|

CA = softmax(MT)T ∈ R|A|×|Q|
(7)

Therefore, we directly multiply XA and CA to obtain the
summaries of the answer for each word in the question:

SA = XAC
A ∈ Rd×|Q| (8)

Likewise, we compute the summary of the question and
the summary of the previous attention contexts SA in light
of each word of the answer, then we get the co-attention QA
pair view VOP and co-attention question view VOQ:

VOP = SAC
Q ∈ Rd×|A|

VOQ = XQC
Q ∈ Rd×|A| (9)
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Figure 4: Differences of the three possible view-fusion
methods: (a) Simple BiLSTM (b) Simple BiLSTM+ResNet
(c) Fusion RNN.

We concatenate them to obtain the co-attention view: VO =
[VOP ;VOQ].

Finally, as is shown in Figure 5, we concatenate the in-
quiry type view Vt, inquiry main verb view Vc, inquiry
semantic view Vs, and co-attention view VO into: V =
[Vt;Vc;Vs;VOP ;VOQ] ∈ R5d×|A|. V contains |A| columns
denoted as V·1 · · ·V·|A|, which represents the view of each
word in the answer from the perspective of the QA pair.

Multi-view Fusion
Residual Connections
Residual networks (He et al. 2016) were proposed to add
more direct links within deep neural nets, which makes the
parameters easier to be optimized. Intuitively, selecting just
important information in the form of residual link instead of
passing all information could enhance the performance.

Inspired by residual networks, we propose to build a fu-
sion recurrent network to integrate the aforementioned dif-
ferent views. In the fusion RNN, important original view in-
formation is added to the processed view information (which
is the output of a bidirectional LSTM network) to form a
holistic view. Therefore, the holistic view considers each
view from both the original information and processed infor-
mation. For comparison, we list other possible view-fusion
methods in Figure 4.

Simple BiLSTM is the easiest way to fuse different views,
which use a BiLSTM RNN to read the word-level view se-
quence V = [V·1, V·2, · · · , V·|A|], i.e.:

h1, · · · , h|A| = BiLSTM(V·1, · · · , V·|A|) (10)

Then the matching score could be calculated as:

have = Average(h1, · · · , h|A|)
s(XQ,XA) = w>have

(11)

where w is a parameter vector.

Simple BiLSTM+ResNet adds the merit of residual net-
work to the simple BiLSTM model for comparison. The dif-
ference to simple BiLSTM is that the inputs of the BiLSTM

are directly linked to the output:

vin = Average(V·1, · · · , V·|A|)
s(XQ,XA) = w>(have +Wresvin)

(12)

where the parameter matrix Wres transfers the dimension of
vin to match that of have.

Fusion RNN is our proposed method. We take the BiL-
STM as a filter to select important information from the in-
put, then directly add it to the output as residual nets did.

Fusion RNN for Building Holistic View
As shown in Figure 4(c), we need to filter useful information
from origin views. Intuitively, the important part of a view
should be chosen in the word level. Therefore, we integrate
each word level view (each column of V ) to one vector using
LSTM units, and then use the gate calculated by the word-
level view to filter the important information needed to be
remembered.

In order to select important information from each view,
we sequentially read each column of V . The left of Figure 5
shows the (t−1)-th step of the forward building process. The
forward building process is an LSTM-RNN architecture, in
which the input V·(t−1) is the (t − 1)-th column of V . We
keep a forward memory M→ ∈ RdM across the building
process. In each step, we need to integrate important infor-
mation of the current answer word into the memory. For the
(t − 1)-th step, we calculate the information vector from a
feed forward layer as:

I(t−1) =WiV·(t−1) + bi ∈ RdM (13)

where Wi ∈ RdM×5d and bi ∈ RdM . Then, we take the
output of the current LSTM unit h→t−1 ∈ Rdh as a signal to
tell us how much of I(t−1) should we fuse into the memory.
We first calculate the gate variable z as:

z = sigmoid(Whh
→
t−1) ∈ RdM (14)

where Wh ∈ RdM×dh . The sigmoid function can normalize
the weight between 0 and 1. Then the holistic view memory
of the t-th step can be updated by:

M→t = (1− z)�M→t−1 + z � I(t−1) (15)

where � stands for element-wise multiplication.
Note that the current M→t contains the fusion result of

the 1-st step to (t − 1)-th time step, so we concatenate it
to the input of the t-th step’s LSTM unit for more accurate
information selection of step t as is shown in Eq 16.

h→t = LSTMcell([h→t−1,M
→
t ]) (16)

The backward process has the opposite direction to the
forward process and is shown at the right part of Figure 5.

After the forward and backward important information
collection processes, we concatenate M→|A| and M←|A| to get
the final memory M|A|; each time step’s output of BiLSTM
is also concatenated.

M|A| = [M→|A|;M
←
|A|]

ht = [h→t ;h←t ]
(17)
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Figure 5: The bidirectional fusion RNN for building holistic view, the blue and orange rectangle are LSTM units. The matrix
V in the middle is the concatenation of the views mentioned in Section . V·t is the t-th column of V (bounded by red boxes),
which is the input of the forward and backward LSTM.

Dataset (Train / Dev / Test) WikiQA SemEval-2016 CQA
# of questions 873 / 126 / 243 4879 / 244 / 327
# of answers 20360 / 2733 / 6165 36198 / 2440 / 3270

Ave length of question 7.16 / 7.23 / 7.26 43.29 / 46.88 / 49.77
Ave length of answer. 25.29 / 24.59 / 24.59 37.76 / 36.18 / 37.27

Table 2: The statistics of three answer selection datasets. For
WikiQA, we remove all the questions that has no right an-
swers.

Since the external memory M|A| keeps the important in-
formation of the input view V·1 · · ·V·|A|, we add M|A| to the
average pooling of the BiLSTM’s output as inspired by deep
residual network (He et al. 2016).

have = Average(h1, · · · , h|A|)
F = have +WmhM|A|

(18)

whereWmh ∈ R2dh×2dM . Finally, F is the holistic view and
is used for scoring the QA pair:

s(XQ, XA) = w>F (19)

where w ∈ R2dh .

Training
We use the max-margin criterion to train our model. For a
given training QA pair (xq, x+a ) (which contains a question
and the correct answer), its score should be larger than any
other pairs containing the same question and a wrong answer
(xq, x

−
a ) by a margin:

s(xq, x
+
a , θ) ≥ s(xq, x−a , θ) +M (20)

where M is a predefined margin; θ represents the parameter
set.

In the training process, we take (xq, x
+
a , x

−
a ) as a train-

ing case and we denote the training set as Y . The objective
function with hinge loss can be written as:

J(θ) =
1

|Y |
∑

(xq,x
+
a ,x−a )∈Y

max
{
0, l(xq, x

+
a , x

−
a , θ)

}
l(xq, x

+
a , x

−
a , θ) =M + s(xq, x

−
a , θ)− s(xq, x+a , θ)

(21)

To compute the network parameter θ, we minimize the max-
margin hinge loss J(θ) through stochastic gradient descent
over shuffled mini-batches with the Adadelta (Zeiler 2012)
update rule.

Experiments
Data & Preprocessing
We report the performance of our proposed method on
two datasets: WikiQA (Yang, Yih, and Meek 2015) and
SemEval-2016 CQA (Nakov et al. 2016). Table 2 demon-
strates some statistics of the two datasets.

WikiQA is an open-domain question answering dataset
in which each question has some candidate answers tagged
as positive or negative and all answers are collected from
Wikipedia. For each QA pair, we randomly sample a neg-
ative answer from the answer pool, and obtain a triple for
training (Rao, He, and Lin 2016). As a result, we get a train-
ing set of 50,594 triplets.

SemEval-2016 CQA contains real data from the
community-created Qatar Living Forums3. We focus on
Subtask A: Question-Comment Similarity, where a comment
is considered as an answer. Each comment is tagged with
one of the three labels: “Good”, “PotentiallyUseful”, and
“Bad”. Only “Good” is considered as positive examples in
evaluation. Unlike the WikiQA dataset, CQA have two main
characteristics: redundant (questions and answers in CQA
generally contains many sentences. Some of the sentences
are meaningless and do not provide any useful information)
and noisy (There are varies of informal language usage, ab-
breviations, typos and grammatical errors).

We use pre-trained GloVe (Pennington, Socher, and Man-
ning 2014) word vectors4 to initialize all word embeddings
in our model. The word embeddings are also updated dur-
ing training. All the dependency parse trees are produced by
Stanford Corenlp5.

3https://www.qatarliving.com/forum
4http://nlp.stanford.edu/projects/glove/
5http://stanfordnlp.github.io/CoreNLP/



Method MAP MRR
Yang, Yih, and Meek (2015) 0.6520 0.6652
Yin et al. (2015) 0.6921 0.7108
Miao, Yu, and Blunsom (2015) 0.6886 0.7069
Santos et al. (2016) 0.6886 0.6957
Wang, Mi, and Ittycheriah (2016) 0.7058 0.7226
He and Lin (2016) 0.7090 0.7234
Wang, Liu, and Zhao (2016) 0.7341 0.7418
Wang and Jiang (2016) 0.7433 0.7545
MVFNN 0.7462 0.7576

Table 3: Performances on WikiQA.

We use 100-dim word embeddings (d = 100) and we set
the hidden layer length dh = 500. The external memory
length dM is set to 400. The margin is set to 0.1.

Overall Performance
For evaluation, we use two ranking metrics: Mean Average
Precision (MAP) and Mean Reciprocal Rank (MRR). We
evaluate our model on two datasets: WikiQA and SemEval-
2016 CQA.

WikiQA The performance of WikiQA is shown in Ta-
ble 3. The approaches listed in Table 3 are all attention-based
methods except for Yang, Yih, and Meek (2015), which
first proposed WikiQA task and reimplemented several base-
line models. Among the attention-based methods, Miao, Yu,
and Blunsom (2015) and Wang, Liu, and Zhao (2016) used
simple semantic attention (the same as our inquiry seman-
tic view). Yin et al. (2015), Wang and Jiang (2016) and
Wang, Mi, and Ittycheriah (2016) introduced the attention
mechanism into the CNN model, and captured the word-
by-word similarity information. The method used by Santos
et al. (2016) and He and Lin (2016) is similar to the co-
attention view in our method. However, none of them ever
used the inquiry content attention and most of them only
used one kind of attention. Different from them, after fus-
ing four different attention views, our model performs more
effective than the other models as is shown in the last row
of Table 3. We use student t-test to measure whether our
method is significantly higher than previous methods. All
the p-values turned out to be lower than 0.05.

SemEval-2016 CQA The performance of SemEval-2016
CQA is shown in Table 4. Hu et al. (2014) proposed a 2D
deep convolution method. The multi-layer convolution and
pooling operation may give it some advantage over Santos et
al. (2016)’s simple co-attention method. Zhang et al. (2017)
used element-to-element multiplication to model the word-
by-word interaction which brings some of the original word
meaning into the final representation to alleviate the influ-
ence of redundant and noisy.

In our model, we use the sequentially fusing method to
dynamically decide what kind of information should we
consider when calculating the matching score. As a re-
sult, we can see that our proposed method has significantly
outperformed the state-of-the-art neural network approach

Method MAP MRR
Hu et al. (2014) 0.7798 -
Santos et al. (2016) 0.7712 -
Filice et al. (2016) 0.7919 0.8642
Joty et al. (2016) 0.7766 0.8493
Zhang et al. (2017) 0.7917 0.8311(w/o features)
Zhang et al. (2017) 0.8014 0.8423
MVFNN 0.8005 0.8678

Table 4: Experiment result in SemEval-2016. Since we did
not use the additional features in Zhang et al. (2017), we
only compare with their performance without additional fea-
tures.

(without additional features) (Zhang et al. 2017) as well as
the feature engineering approach (Filice et al. 2016). Student
t test showed that all results are significant, and the p values
are also listed in Table 4.

Effect of Multi-View
In this section, we will use experiments to illustrate the ef-
fect of multi-view. In Table 5, we listed single-view as com-
parison to multi-view.

Single-view is widely used in previous works. Single-
view means to use all kinds of information (such as inquiry
type, inquiry semantic, etc) to generate one view. The atten-
tion of single-view is calculated as Eq 22.

Attsing = wT ((Wtxt +Wcxc +Wsxs)⊕WaXA) (22)

where w, Wa, Wt, Wc, Ws are trainable parameters. An
equivalent form of single-view is to use a feed forward neu-
ral network (denoted as a) to compute the attention as fol-
lows:

αi = a([XAi;xt;xc;xs])

Attsing = softmax([α1, · · · , αi, · · · , α|A|])
(23)

where XAi represents the word vector of the i-th word in
answer. Then the single-view is:

Vsing = Attsing ⊗XA (24)

Since co-attention view VO is created by 2-dim attention,
we just concatenate them as V = [Vsing, VO]. The fusion
process is the same as MVFNN.

Also, several ablation experiments are listed in Table 5.
We exclude the four kind of views from MVFNN one by
one and report the results in Table 5.

From the results, we can see that all kinds of view bring
more or less improvement to our model. Among them,
the inquiry main verb view brings about 2% increment in
MAP and MRR of the two tasks, and the inquiry semantic
view brings 1%∼2% increment. Note that co-attention view
brings about 5%∼6% increment on the two tasks, which
means that co-attention view is extremely important in the
QA matching process.

In the single-view experiments, we can see that our model
of multi-view method MVFNN can significantly outperform



Method WikiQA SemEval-2016 CQA
MAP MRR MAP MRR

Single-view 0.6882 0.7004 0.7780 0.8591
p-value 0.0015∗ 0.0016∗ 0.0122∗ 0.0256∗
MVFNN 0.7462 0.7576 0.8005 0.8718
MVFNN − Inquiry Type View 0.7368 0.7390 0.7851 0.8463
MVFNN − Inquiry Main Verb View 0.7319 0.7411 0.7843 0.8499
MVFNN − Inquiry Semantic View 0.7382 0.7576 0.7826 0.8575
MVFNN − Co-attention View 0.7018 0.7130 0.7503 0.8238

Table 5: Comparison between single-view, multi-view and ablation experiments of separated attention. The p-value in the
second line is calculated between “Single-view” and “MVFNN”. “∗” means significant.

Method WikiQA SemEval CQA
MAP MRR MAP MRR

Simple BiLSTM 0.7253 0.7378 0.7855 0.8539
+ ResNet 0.7312 0.7479 0.7911 0.8644
Fusion RNN 0.7462 0.7576 0.8005 0.8718

Table 6: Comparison between simple BiLSTM and our
method.

the single-view method. This fact states that simply add use-
ful information to generate attentions will lead to severe in-
formation loss. So we just separately calculate the attentions
and let the fusion process to decide which kind of informa-
tion is important. Therefore, we get an improvement in the
result.

Effect of Fusion RNN
According to Table 6, we can see that after adding residual
connections, the model outperforms simple BiLSTM model.
Also, our fusion RNN method outperforms the simple BiL-
STM and “simple BiLSTM+ResNet” due to the external
memory. As is illustrated in Figure 4, simple BiLSTM only
takes the V·1, · · · , V·|A| as input and calculates h1, · · · , h|A|
as output. After adding ResNet, the output layer can directly
take some original information, which makes the model be
trained with reference to the layer inputs. Unlike the ResNet,
our fusion RNN model use the hidden layer of the BiLSTM
to calculate a filter gate to keep the important part of the in-
put. Therefore, our model can be trained with the reference
to the important part of the inputs. This improvement in ar-
chitecture leads to a better performance in result.

Conclusion
In this paper, we propose a multi-view fusion method to
solve answer selection problem. We proposed to separate
various kind of attention to form different views, including
inquiry type view, inquiry main verb view, inquiry semantic
view and co-attention view. Then we use a fusion RNN to
integrate these views to get a holistic view of the QA pair,
which can be treated as an adaptation of residual networks in
our scenario. We did experiments on two datasets: WikiQA
and SemEval-2016 CQA, and we achieved state-of-the-art
performance on the two datasets. Also, we did detailed abla-
tion experiments to verify the effectiveness of our proposed
components.

Future studies may focus on the exploitation of heteroge-
neous resources and the integration of multiple tasks. Con-

ceptually related tasks may include sentence paraphrasing,
relation extraction, entity classification and linking. It could
be helpful to jointly train answer selection models with
any of these tasks. Deriving additional attention views from
these tasks may also contribute to performance gain. Fur-
thermore, since unlabeled data are much easier to acquire,
we also would like to explore whether introducing additional
unlabeled data or weak supervision could be helpful for cal-
culating additional attention vectors.
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